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Through dominant mutations, aminoacyl-tRNA synthetases consti-
tute the largest protein family linked to Charcot-Marie-Tooth dis-
ease (CMT). An example is CMT subtype 2N (CMT2N), caused by
individual mutations spread out in AlaRS, including three in the
aminoacylation domain, thereby suggesting a role for a tRNA-
charging defect. However, here we found that two are aminoacy-
lation defective but that the most widely distributed R329H is nor-
mal as a purified protein in vitro and in unfractionated patient cell
samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three
mutant proteins gained the ability to interact with neuropilin 1
(Nrp1), the receptor previously linked to CMT pathogenesis in
GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed
in patient samples carrying the R329H mutation. However, CMT2N
mutations outside the aminoacylation domain do not induce the
Nrp1 interaction. Detailed biochemical and biophysical investigations, in-
cluding X-ray crystallography, small-angle X-ray scattering, hydrogen-
deuterium exchange (HDX), switchSENSE hydrodynamic diameter
determinations, and protease digestions reveal a mutation-
induced structural loosening of the aminoacylation domain that
correlates with the Nrp1 interaction. The b1b2 domains of Nrp1
are responsible for the interaction with R329H AlaRS. The results
suggest Nrp1 is more broadly associated with CMT-associated
members of the tRNA synthetase family. Moreover, we revealed
a distinct structural loosening effect induced by a mutation in the
editing domain and a lack of conformational impact with C-Ala
domain mutations, indicating mutations in the same protein may
cause neuropathy through different mechanisms. Our results
show that, as with other CMT-associated tRNA synthetases, ami-
noacylation per se is not relevant to the pathology.

Charcot-Marie-Tooth disease | neuropilin 1 | AlaRS

Charcot-Marie-Tooth disease (CMT) is the most common
inherited neurological disorder, affecting 1 in 2,500 people

globally, with no treatment available beyond supportive care (1).
Also known as hereditary motor and sensory neuropathy
(HMSN), the disease predominantly affects peripheral nerves
that control muscle movements and also carry sensory informa-
tion to the brain, leading to muscle weakness and loss of sen-
sation, especially in the hands and feet. Genetically speaking,
CMT is a heterogenous group of diseases that have been linked
to more than 100 protein-coding genes (2). Although for some
genes their connection to peripheral nerve structure and/or
function is obvious, this is not the case for many other genes.
Prominently among them are the genes encoding aminoacyl-
transfer RNA (tRNA) synthetases (aaRSs). So far, five aaRSs
(i.e., glycyl [GlyRS or GARS1]-, tyrosyl [TyrRS or YARS1]-,
histidyl [HisRS or HARS1]-, alanyl [AlaRS or AARS1]-, and
tryptophanyl [TrpRS or WARS1]-tRNA synthetases) have been
unequivocally linked to the disease, constituting the largest gene
family implicated in CMT (2, 3).

aaRSs are evolutionarily conserved essential enzymes re-
sponsible for charging tRNA with their cognate amino acids to
support ribosomal protein synthesis (4). In complex multicellular
organisms, the functional landscape of aaRSs has been expanded
with broad regulatory functions beyond their enzymatic activity
(5). At least for three CMT-linked aaRSs, including GlyRS,
TyrRS, and HisRS, a loss-of-function (enzymatic) mechanism
has been excluded (6–12). In part this is due to the fact that
CMT-linked mutations in aaRSs are dominant; patients always
have both an affected and an unaffected gene allele, expressing
the mutant aaRS along with the wild-type (WT) enzyme to
support tRNA aminoacylation even when the mutant is defective
(7). Interestingly, CMT-causing mutations in these three aaRSs
all induce structural opening (6–8), which can render aberrant
interactions outside the translation machinery that contribute
critically to the disease pathology (6, 9, 13, 14). In particular, the
aberrant interaction made by secreted CMT-mutant GlyRS with
transmembrane receptor neuropilin 1 (Nrp1) inhibits VEGFA
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from binding and transmitting a neurotrophic signal through the
receptor (9).
AlaRS is one of the aaRSs firmly linked to CMT, designated

as subtype 2N (CMT2N), also known as AD-CMTax-AlaRS to de-
note the autosomal dominant inheritance and predominant axonal
phenotypes (3). In contrast to other CMT-linked aaRSs, which are
dimers, human AlaRS catalyzes the tRNA aminoacylation reaction
as a monomer (15). This unique feature of AlaRS is particularly
interesting because it has been shown for these dimeric aaRSs
(i.e., GlyRS, TyrRS, and HisRS) that CMT mutation-induced
structural opening is mainly localized at or near the dimerization
interface (6–8). Would CMT-causing mutations in AlaRS also in-
duce structural opening? If so, where would the opening site be?
AlaRS is also unique among CMT-linked aaRSs in that it

contains an editing domain, located in between the amino-
acylation domain at the N terminus and the C-Ala domain at the
C terminus (Fig. 1A). The aminoacylation domain of AlaRS is
necessary and sufficient in charging tRNAAla with its cognate
amino acid alanine. It not only contains the catalytic active site
but also key residues responsible for recognizing the major
identity element of tRNAAla, which is a G3:U70 wobble base pair
in the acceptor stem (16). However, the AlaRS active site is not
sufficient in selecting out the cognate amino acid due to high
similarity of alanine with other amino acids, such as serine and
glycine (17). Therefore, an editing domain has been incorpo-
rated into AlaRS to correct the mistake if it happens. The im-
portance of the hydrolytic editing function of AlaRS has been
extensively demonstrated, as even mild editing defects will cause
severe diseases (18, 19). The function of the C-Ala domain in
human AlaRS is not known. In prokaryotic AlaRS, C-Ala helps
with tRNA binding, therefore enhancing enzymatic activity;
however, this role is lost in humans (15).
CMT-causing mutations have been identified from all three

domains of AlaRS (20–26). To broadly study the impact of CMT
mutations on the structure and function of AlaRS, we included
mutations from each domain, including three in the amino-
acylation domain (N71Y, G102R, and R329H), one in the
editing domain (E688G), and two in the C-Ala domain (E778A
and D893N) (Fig. 1 A and B). Among them, the R329H muta-
tion in the aminoacylation domain has been recurrently identi-
fied in eight unrelated families from four different countries,
indicating ultrastrong disease-causing capacity of this mutation.
We found that only N71Y and G102R, but not R329H in the
aminoacylation domain, and no mutation from the editing and
C-Ala domains, disrupt the catalytic activity. Consistently, no
tRNA aminoacylation defect was detected in patient samples
carrying the R329H mutation, confirming loss of function (en-
zymatic) is not the cause of CMT2N. None of the mutations,
including E688G in the editing domain, affects the proofreading
activity of AlaRS, suggesting CMT2N is not linked to a defect in
editing function either. Mutations in the aminoacylation and
editing domains induce a localized structural opening effect
within each domain, whereas mutations in the C-Ala domain
have no conformational impact. Interestingly, regardless of the
differential impact on enzymatic activity, all mutations in the
aminoacylation domain render an aberrant, gain-of-function in-
teraction with Nrp1. The aberrant AlaRS-Nrp1 interaction is
further confirmed in patient samples carrying the R329H mu-
tation. This suggests that the gain-of-function impact of a mu-
tation is a separate property from the enzymatic function.
Moreover, this study provided evidence to indicate that even a
nonenzymatic gain-of-function effect can be a shared disease
mechanism among different tRNA synthetases.

Results
CMT2N Mutations Do Not Affect the Monomeric State of AlaRS or
Reduce Protein Stability. We first examined whether CMT muta-
tions affect the monomeric state of AlaRS. Recombinant His-

tagged AlaRS WT and six CMT mutation proteins were over-
expressed in Escherichia coli and purified from the soluble fraction by
nickel-nitrilotriacetic acid (Ni-NTA) column and ion-exchanging
chromatography. All proteins displayed similar yields, suggesting
that CMT mutations do not affect AlaRS stability. The gel filtration
chromatography analysis confirmed that human AlaRS mainly exists
as a monomer and that CMT mutations do not change the mono-
meric state of AlaRS (SI Appendix, Fig. S1). We also performed
fluorescence-based thermal shift assays (TSAs). The melting tem-
perature (Tm) of all mutants is within 1 °C (plus or minus) from that
of the WT AlaRS, except for N71Y, which has an increase of 2.3 °C
in Tm, indicating higher stability (Fig. 2A). Therefore, CMT muta-
tions do not reduce protein stability of AlaRS.

Majority of CMT2N Mutations Including R329H Do Not Impact tRNA
Aminoacylation. The AlaRS-catalyzed aminoacylation reaction
occurs in two steps. In the first step, alanine is activated by
adenosine triphosphate (ATP) in the active site of AlaRS,
forming an enzyme-bound alanyl-adenylate (Ala-AMP) inter-
mediate. In the second step, the activated amino acid is trans-
ferred to the 3′ end of tRNA to yield the alanyl-tRNA product,
released together with AMP from the enzyme. To investigate the
impact of CMT mutations on tRNA charging, we performed an
in vitro aminoacylation assay that examines the overall reaction
efficiency with purified recombinant AlaRS proteins and in vitro
transcribed tRNAAla. While N71Y and G102R, both located
near the active site of AlaRS (Fig. 1B), completely abolished the
enzymatic activity, R329H from the aminoacylation domain (but
away from the active site), and mutations from editing (E688G)
and C-Ala (E778A and D893N) domains have minor impact on
the activity, if any (Fig. 2B).

CMT Patients Carrying R329H Mutation Do Not Have a Defect in tRNA
Aminoacylation. Because R329H was recurrently identified in
CMT patients and was previously suggested to be a loss-of-
function mutation (23), we examined lymphocytes derived from
CMT2N patients carrying this mutation. Western blot analysis
indicated no apparent change in AlaRS protein level in three
different CMT patients compared with healthy individuals,
confirming protein stability (Fig. 3A). Using the in vitro amino-
acylation assay, we detected no enzymatic activity defect using
lysates of CMT patient cells (Fig. 3B). Lastly, Northern blot
analysis was performed to confirm the lack of deficiency in
aminoacylation of endogenous tRNAAla in the patients (Fig. 3 C
and D). Total RNAs were extracted from cells and analyzed
under acidic conditions to prevent deacylation of charged
tRNAs. About 80% of the endogenous tRNAAla was charged in
cells from patients as well as from healthy individuals (Fig. 3D),
an aminoacylation level that is consistent with expectation based
on previous reports (27). Thus, we unequivocally concluded that
CMT patients carrying the AlaRS R329H mutation do not have
a defect in tRNA aminoacylation.

Active Site of AlaRSR329H Is Identical to that of WT AlaRS. In parallel,
we determined the crystal structure of the aminoacylation do-
main of AlaRS-R329H in complex with the nonlabile 5′-O-[N-
(L-alanyl) sulfamoyl]adenosine (AlaSA) analog of the reaction
intermediate Ala-AMP at 1.38-Å resolution (SI Appendix, Table
S1). The aminoacylation domain of AlaRS by itself possesses
robust activity in charging tRNAAla (28, 29). Our previous work
solved the crystal structure of the aminoacylation domain of WT
AlaRS (AlaRSN455) also in complex with AlaSA (30) (SI Ap-
pendix, Fig. S2A). However, using the same fragment for crys-
tallization of the mutant protein, the resulting structure of
AlaRS-R329H only contains the N-terminal 388 amino acids
(aa), missing more than 60 aa from the C-terminal end (SI Ap-
pendix, Fig. S2B). This indicates that the C-terminal region of the
aminoacylation domain is more flexible in AlaRS-R329H than in

2 of 9 | PNAS Sun et al.
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AlaRS-WT. Due to the increased flexibility, the C terminus
might be too flexible to be resolved in the crystal structure or be
cleaved by proteolysis during crystallization. Evidence in the
crystal lattice interaction supports the latter explanation (SI
Appendix, Fig. S2C). Indeed, AlaRS-R329H appears to be more
susceptible to proteolysis than the WT protein (SI Appendix, Fig.
S3). We further generated WT AlaRSN388 (by trypsin digestion
of AlaRSN455) and determined its crystal structure at 1.28-Å
resolution (SI Appendix, Fig. S2D) for comparison with that of
R329H AlaRSN388. Superposition of WT AlaRSN388 and R329H
AlaRSN388 structures shows a small rmsd of 0.36 Å for 348 Ca
atoms and essentially identical active site and interactions with
AlaSA (SI Appendix, Fig. S2 E and F). Consistently, the ATP/
pyrophosphate (PPi) exchange assay that specifically examines
the first step of the two-step aminoacylation reaction indicates
no defect caused by the R329H mutation (SI Appendix, Fig. S4).
Because the second step of the aminoacylation reaction is usually

rate limiting (31, 32), defect in the first step may not be reflected by
the overall aminoacylation efficiency. Nevertheless, we have con-
firmed that R329H mutation does not impact either step of the two-
step aminoacylation reaction (Fig. 2B and SI Appendix, Fig. S4).

CMT2N Mutations Do Not Impact the Proofreading Activity of AlaRS.
Next we examined the proofreading activity of AlaRS with pre-
mischarged serine-tRNAAla as the substrate. Although both
serine and glycine can be misactivated by AlaRS, the Purkinje
cell loss and ataxia phenotypes caused by a “sticky” mutation in
the editing domain are more sensitive to serine than glycine
mischarging (19). Therefore, we used serine-tRNAAla as the
substrate for the deacylation assay. WT AlaRS as well as all six
CMT mutants, including E688G located in the editing domain,
efficiently hydrolyzed the mischarged tRNA (Fig. 2C). There-
fore, CMT mutations do not impact the proofreading activity
of AlaRS.
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Fig. 1. Distribution of CMT-causing mutations on AlaRS. (A) Six CMT2N-associated dominant mutations distributed in all three domains of cytosolic human
AlaRS. (B) Assembled structure model of human AlaRS monomer. The model was first generated by SWISS-MODEL (45). The aminoacylation/catalytic domain
(in complex with AlaSA, a Ala-AMP analog) and the C-Ala domain were subsequently replaced with their crystal structure (PDB 5KNN and PDB 5T5S, re-
spectively) followed by manual adjustment. CMT mutation sites are indicated with red balls. Inset shows the structure model of human AlaRS and tRNAAla

complex. The structure model of human AlaRS was aligned to Archaeoglobus fulgidus AlaRS in complex with tRNAAla (PDB 3WQY) according to the ami-
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Hydrogen-Deuterium Exchange Analysis Indicates Differential Effect
of CMT Mutations on AlaRS Conformation. The apparent suscepti-
bility of AlaRS-R329H to proteolysis suggests increased con-
formational flexibility induced by the CMT mutation,
reminiscent of what has been observed for other CMT-linked
aaRSs (6–8). To pinpoint the site of conformational change in
the context of the full-length protein and to compare different
CMT mutations, we performed hydrogen-deuterium exchange

mass spectrometry (HDX-MS) analysis for all six CMT mutants
as well as the WT AlaRS as the reference. When the solvent of a
protein is changed from H2O to D2O, amide hydrogens on the
protein backbone undergo a hydrogen-to-deuterium exchange
process. The rate of the exchange, or deuterium incorporation,
represents solvent accessibility and conformation dynamics of
each region in the protein (33). Mutation-induced conforma-
tional change in structure and dynamics can be inferred by
comparing the mutant with the WT protein.
Except for the two in the C-Ala domain, mutations located in

the aminoacylation domain (N71, G102R, and R329H) and the
editing domain (E688G) all showed an overall increase in deu-
teration incorporation, compared to WT AlaRS (Fig. 4A). The
site(s) of conformational change, if any, is confined within the
mutation-harboring domain. Particularly, mutations located
within the aminoacylation domain only increase flexibility of the
aminoacylation domain, and the editing domain mutation only
increases flexibility of the editing domain, whereas no detectable
conformational impact is induced by C-Ala domain mutations
(Fig. 4B). Within the aminoacylation domain, G102R and
R329H induce more localized conformational changes near the
mutation site, whereas the impact of N71Y is more broadly
distributed (Fig. 4B). Consistent with what we observed during
crystallization and from the proteolysis analysis (SI Appendix,
Fig. S3), R329H mutation causes increased flexibility at the
C-terminal region of the aminoacylation domain (Fig. 4A).

Small-Angle X-Ray Scattering Confirms Structural Opening Effect of
Mutations in Aminoacylation and Editing Domains. To confirm the
differential effect of CMT mutations on AlaRS conformation,
we performed small-angle X-ray scattering (SAXS) analysis on
AlaRS proteins. For each protein sample, the shapes of the
scattering curves are independent of the protein concentration
(SI Appendix, Fig. S5A) and the corresponding Guinier plots
show parallel and linear fits (SI Appendix, Fig. S5B), indicating
the absence of significant aggregation during the measurements.
The molecular masses extrapolated from the scattering curves
are all around 110 kDa, consistent with a monomeric state for all
AlaRS proteins, as indicated by gel filtration chromatography (SI
Appendix, Fig. S1).
The ab initio shape reconstruction analyses show a more

elongated shape for mutants of aminoacylation and editing do-
mains (i.e., N71Y, G102R, R329H, and E688G), compared with
WT AlaRS and the C-Ala domain mutants (Fig. 5A). Consis-
tently, the radius of gyration and maximum dimension (Dmax)
derived from the scattering data are larger for all mutants except
for the two in the C-Ala domain, compared to WT AlaRS
(Fig. 5B). Interestingly, based on radius of gyration and Dmax
parameters, R329H induces the largest conformational change
among all the aminoacylation domain mutations (Fig. 5B).

Aminoacylation and Editing Domain Mutants Exhibit Larger
Hydrodynamic Diameter. We also used the switchSENSE tech-
nology to evaluate the hydrodynamic diameter of AlaRS proteins
(34). This method tethers short double-strand DNA to a gold
surface on one end and the other end was binding with fluo-
rescence probe in a single-strand DNA and proteins of interest in
the other strand. The motion of the DNA is triggered by alter-
nating the voltage across the chip surface and is recorded in real
time through the fluorescence probe attached to the DNA. Upon
conjugation of a protein, the hydrodynamic friction of the DNA
double strand is affected and subsequently the movement of
these levers, which can be used to estimate the hydrodynamic
diameter of the protein. Again, we found that all CMT mutants,
except those of the C-Ala domain, have an increased size relative
to WT AlaRS (Fig. 5C). Taken together, both SAXS analysis and
hydrodynamic sizing data confirm that CMT mutations in
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aminoacylation and editing domains, and not the C-Ala domain,
induce structural relaxation and opening of AlaRS.

Only Aminoacylation Domain Mutations Induce Aberrant Interaction
with Nrp1. Previous studies indicated that the CMT mutation-
induced structural opening in tRNA synthetases can render aber-
rant interactions outside the translation machinery that contribute
critically to the disease pathology (6, 9, 13, 14). For example, CMT
mutations in GlyRS induce an aberrant interaction of the synthe-
tase with transmembrane receptor Nrp1 (9). Interestingly, while the
WT AlaRS does not interact with Nrp1, all three CMT mutations
in the aminoacylation domain can also induce an aberrant inter-
action with the receptor (Fig. 6A). However, not only the C-Ala
mutations but also the editing domain mutation cannot induce
Nrp1 interaction (Fig. 6A). Using patient-derived lymphocytes
compared with those from healthy individuals, we confirmed the
aberrant AlaRS-Nrp1 interaction in patients carrying the R329H
mutation (Fig. 6 B and C).
The GlyRSCMT/Nrp1 interaction was mapped to the extra-

cellular b1 domain of Nrp1 (9). To understand if the same do-
main in Nrp1 mediates the aberrant AlaRSCMT intearaction, we
tested various domain-deletion constructs of Nrp1 for binding to
WT and R329H AlaRS (Fig. 6 D and E). Pull-downs of WT
AlaRS and R239H with C-terminally Fc-tagged Nrp1 constructs
showed that the extracellular a (a1 and a2) and c domains had no
impact on AlaRSCMT binding. By contrast, the Nrp1 b domains
(b1 and b2) were sufficient to bind R329H AlaRS, with each
domain contributing to the interaction. Since the two domains
are adjacent to each other in sequence and tightly associated in
the three-dimensional structure (35, 36), these results indicate
that b1 and b2 together form a contiguous binding interface for
mutant AlaRS. The b1 domain hereby constitutes the consensus
binding site for CMT-associated mutant AlaRS and GlyRS.

Discussion
Understanding how the disease mutations impact the structure
and function of AlaRS, a unique member of the largest gene
family causatively linked to CMT, is particularly interesting and

important. AlaRS is the only CMT-associated tRNA synthetase
that does not function as a dimer in tRNA aminoacylation and
that has the need to incorporate a separate domain to perform
hydrolytic editing function to correct the mistake when tRNAAla

is mischarged with a noncognate amino acid. Both aspects are
relevant to neurodegeneration. The dimer interface (mediated
by the catalytic domain) has been shown over and over again,
from GlyRS, TyrRS, to HisRS, to directly house and/or to be
conformationally altered by many CMT-causing mutations, al-
though the conformational change may not necessarily affect
dimer formation (6–8). The editing function of AlaRS has been
linked to neurodegeneration in a mouse model (19).
Typically, the tRNA aminoacylation function of an aaRS is sup-

ported by a catalytic domain harboring the active site and an anti-
codon binding domain recognizing the cognate tRNA. However, due
to the lack of anticodon recognition of tRNAAla, AlaRS has no
anticodon binding domain. Instead, its aminoacylation domain not
only contains the catalytic active site but also tRNA binding and
recognition motifs. In this regard, the aminoacylation domain alone
constitutes the catalytic core of AlaRS, whereas the catalytic core of
the other CMT-associated aaRSs contains both catalytic and anti-
codon binding domains. Almost all confirmed CMT-causing muta-
tions in other aaRSs are located within the catalytic core, whereas in
AlaRS they are spread throughout the catalytic core, editing domain,
and the C-Ala domain (SI Appendix, Fig. S6).
Some common schemes have arisen from past studies of CMT-

associated aaRSs. First, despite their concentration in the catalytic
core, they do not necessarily affect tRNA aminoacylation activity of
the synthetase, as exemplified by GlyRS-E71G, TyrRS-E196K, and
HisRS-D364Y, all of which have WT-like enzymatic activity (6, 12,
37, 38). Second, regardless of their impact on enzymatic activity, all
CMT-causing mutations induce an open conformation in the mu-
tant proteins relative to their respective WT counterpart. The open
conformation is commonly featured by structural relaxation at the
dimer interface that leads to an overall size expansion (6–8). Within
each aaRS, the open conformation induced by various mutations
are similar, albeit with different levels of dynamics and flexibility
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(6–8). This open conformation endows the mutant proteins with
the ability to make aberrant interactions with other molecules. So
far, we have identified at least four aberrant interaction partners of
aaRS mutants that contribute to the pathogenesis of CMT. These

include transmembrane receptor Nrp1, Trk receptors, and
α-tubulin deacetylase HDAC6, which bind to GlyRS CMTmutants,
and transcription repressor TRIM28 interacting with TyrRS CMT
mutants (6, 9, 13, 14, 39).

A MDSTLTASEIRQRFIDFFKRNEHTYVHSSATIPLDDPTLLFANAGMNQFKPIFLNTIDPSHPMAKLSRAANTQKCIRAGGKHNDLDDVGKDVYHHTFFEM

LGSWSFGDYFKELACKMALELLTQEFGIPIERLYVTYFGGDEAAGLEADLECKQIWQNLGLDDTKILPGNMKDNFWEMGDTGPCGPCSEIHYDRIGGRDA

AHLVNQDDPNVLEIWNLVFIQYNREADGILKPLPKKSIDTGMGLERLVSVLQNKMSNYDTDLFVPYFEAIQKGTGARPYTGKVGAEDADGIDMAYRVLAD

HARTITVALADGGRPDNTGRGYVLRRILRRAVRYAHEKLNASRGFFATLVDVVVQSLGDAFPELKKDPDMVKDIINEEEVQFLKTLSRGRRILDRKIQSL

GDSKTIPGDTAWLLYDTYGFPVDLTGLIAEEKGLVVDMDGFEEERKLAQLKSQGKGAGGEDLIMLDIYAIEELRARGLEVTDDSPKYNYHLDSSGSYVFE

NTVATVMALRREKMFVEEVSTGQECGVVLDKTCFYAEQGGQIYDEGYLVKVDDSSEDKTEFTVKNAQVRGGYVLHIGTIYGDLKVGDQVWLFIDEPRRRP

IMSNHTATHILNFALRSVLGEADQKGSLVAPDRLRFDFTAKGAMSTQQIKKAEEIANEMIEAAKAVYTQDCPLAAAKAIQGLRAVFDETYPDPVRVVSIG

VPVSELLDDPSGPAGSLTSVEFCGGTHLRNSSHAGAFVIVTEEAIAKGIRRIVAVTGAEAQKALRKAESLKKCLSVMEAKVKAQTAPNKDVQREIADLGE

CLCQVPQNAANRGLKASEWVQQVSGLMDGKGGGKDVSAQATGKNVGCLQEALQLATSFAQLRLGDVKN
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In this study, we performed a structure–function study for
AlaRS CMT mutants. Six different CMT mutations from all
three domains of AlaRS were included in the study. Consistent
with past studies, CMT mutations do not necessarily affect the
tRNA aminoacylation activity of AlaRS. As expected, mutations in
the editing domain and the C-Ala domain have no effect on
charging (Fig. 2B). Notably, even among mutations located within
the aminoacylation domain, the R329H mutation has little impact
on enzymatic activity (Fig. 2B). The fact that R329H is recurrently
identified and has the strongest association with CMT highlights
once again the disconnection between enzymatic activity and CMT
pathology. Importantly, the lack of enzymatic activity defect has
been rigorously confirmed in patient samples (Fig. 3).
It is worth noting that four of the six mutations were previously

studied for their impact on the aminoacylation activity of AlaRS
in vitro and/or in yeast (23, 24). Using a yeast complementation
assay, all three mutations within the catalytic domain, including
R329H, exhibited a loss of function in supporting yeast cell
growth, suggesting these mutations abolished the aminoacylation
activity of AlaRS (23, 24). The N71Y, R329H, and E778A muta-
tions were also tested through an in vitro tRNA aminoacylation
assay similar to what we perform here (23). While our findings on
N71Y and E778A are consistent, the R329Hmutation was found to
severely reduce the tRNA charging activity of AlaRS (23). The
discrepancy is hard to explain. However, we did note that the
AlaRS constructs used in the previous study were fused to SMT3
protein at the N terminus to improve solubility, whereas our con-
structs do not have any N-terminal fusion or tag. There might be a
slight chance for the fused SMT3 protein to selectively impact the
R329H mutant. However, this cannot explain why R329H was
found to be a loss-of-function mutation through the yeast com-
plementation assay as well, where no fusion or tag was indicated for
the construct (23). We should note that results from the yeast assay
and from using the human proteins were found to be inconsistent
for certain mutations in other CMT-linked aaRSs, including TyrRS
(12, 37, 40), GlyRS (38, 41), and HisRS (7, 42), indicating yeast may
not always be an accurate model for studying human mutations, at
least for the tRNA synthetases.
Structurally speaking, despite the lack of a dimer interface, all

mutations in the aminoacylation domain, whether or not affecting
enzymatic activity, still induce a conformational opening of the

catalytic core, as demonstrated by three independent biophysical
measurements (i.e., HDX, SAXS, and switchSENSE). Remarkably,
the open conformation of the AlaRS catalytic core enables inter-
actions with Nrp1 (Fig. 6A), as does the open conformation of the
GlyRS catalytic core (8, 9). We also tested HDAC6 and TRIM28
and found no aberrant interaction of AlaRS with these two can-
didates, suggesting a unique structural basis underlying the inter-
action with different partners and, at least for the Nrp1 interaction,
dimer interface per se is not the key.
In contrast to the sticky mutation that causes Purkinje cell loss

and ataxia by affecting the editing function of AlaRS, the E688G
mutation in the editing domain does not lead to defective editing
activity (Fig. 2C), ruling out the possibility that CMT2N is caused
by toxicities linked to editing deficiency. Interestingly, the E688G
mutation can also induce an open conformation, which however
is different from that induced by mutations in the aminoacylation
domain, as indicated by the HDX analysis (Fig. 4) and by its
inability to make the aberrant Nrp1 interaction (Fig. 6A). This
again highlights a specific structural change underlying the Nrp1
interaction and suggests that the direct molecular mechanism of
E688G in causing CMT is likely to be different from that of the
aminoacylation domain mutations. A lack of Nrp1 interaction
was also observed for the GlyRS deltaETAQ mutant (43).
No functional and structural perturbations have been detected

with the two C-Ala domain mutations at all (Figs. 2, 4, 5, and
6A). It is worth noting that one of the C-Ala mutations (E778A)
is associated with incomplete penetrance and mild phenotypes
(SI Appendix, Table S2) (23), suggesting insufficient genetic ev-
idence for this mutation to be CMT causing. The other one
(D893N), however, was identified in a large family and showed
clear segregation with the neuropathy (SI Appendix, Table S2)
(26). The clinical phenotypes associated with the D893N family
seem unique. Compared with the typical distal motor and sen-
sory neuropathy phenotypes associated with other CMT2N mu-
tations, D893N patients exhibit distal hereditary motor
neuropathy (dHMN) phenotypes only and have no sensory in-
volvement (26). Moreover, among CMT-associated residues
studied here, E778 and D893 are the least conserved ones across
eukaryotes, bacteria, and archaea (Fig. 1C). In contrast, R329 is
strictly conserved throughout evolution, correlating with its
ultrastrong disease association. Whether and how mutations in
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the C-Ala domain are causatively linked to CMT remain to be
further explored.
A prerequisite for a tRNA synthetase to interact with the ex-

tracellular region of Nrp1 would be its physical presence outside the
cell. Our previous study showed GlyRS can be secreted from im-
mortalized NSC-34 motor neuron cells and differentiated C2C12
myotubes (9). Interestingly, nine cytoplasmic aaRSs, including
AlaRS, GlyRS, and the other three CMT-linked aaRSs were
identified in the secretome of differentiating human myoblasts by
mass spectrometry (44), suggesting secretion from muscle cells is a

common feature of CMT-linked aaRSs. Similar to what we found
for GlyRS (9), our preliminary study using transfected HEK293
cells suggests that CMT mutations do not affect the extracellular
transportation of AlaRS (SI Appendix, Fig. S7 A and B). Although
the impact of CMT mutations on AlaRS secretion should be fur-
ther studied in disease-relevant cells and tissues, the result is con-
sistent with the notion that the mutational impact on AlaRS-Nrp1
interaction we observed in transfected motor neuron cells and in
patients’ lymphocytes is likely caused by changes in the ability
rather than the accessibility of the mutant for the interaction.
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Taken together, this structure–function study for AlaRS mu-
tants confirmed that loss of function (enzymatic) is not the cause
of CMT. CMT2N is also not linked to editing deficiency. We reveal
that mutations in different aaRSs can lead to the same aberrant
interaction, suggesting that Nrp1 is more broadly associated with
CMT-associated members of the tRNA synthetase family. More-
over, the b1 domain of Nrp1 constitutes the consensus binding site
for CMT-associated mutant AlaRS and GlyRS. Future study
should investigate whether other aaRSs beyond GlyRS and AlaRS
can also interact with the b1 domain of Nrp1 and how different
aaRSs, with their apparently unique structures and sequences, can
bind to the same receptor. Nevertheless, our result demonstrates
the possibility that different tRNA synthetases can share the same
gain-of-function disease-causing mechanism.

Materials and Methods
Materials and general laboratory methods, protein expression and purifi-
cation, thermal shift assay, in vitro transcription of tRNA, in vitro amino-
acylation assay, patient lymphocyte immortalization, cell culture and growth,
Northern blot, ATP-PPi exchange assay, crystallization and data collection,
structure determination and refinement, small-angle X-ray scattering and ab

initio shape reconstruction, switchSense analysis, HDX detected by MS,
coimmunoprecipitation, domain mapping, and additional necessary infor-
mation are available in SI Appendix, SI Materials and Methods.

Data Availability. Coordinates and structure factors have been deposited in
the Protein Data Bank for human AlaRSN388-WT and AlaRSN388-R329H under
accession codes PDB 4XEM and PDB 4XEO, respectively.
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